Connectivity

Microwave Precision Cable • Ultra-miniaturized Coaxial Cable / Connector for SMT • 1.5mm Minimum Bend Radius Cable (67GHz) •

Antenna

- Installation Antennas for mobile carrier
 Antenna Modules
- Test Antennas

We make your RF the BEST

"We design and manufacture high performance RF Interconnectors and Antenna. RF Designers and test engineers can leverage our products to make their RF performance best, on time."

[®]Core Capability

mmWave-oriented passive RF design

mmWave-optimized material fusion

Expertise in manufacturing and testing up to 110GHz

 (\bullet)

Your trusted partner for **5G and BEYOND-5G**

DomesticOverseasTOTALregistrationapplicationregistrationapplication721103562279

♥Certifications

SENSOR VIEW Industries

SENSORVIEW delivers a total solution platform service by providing material and design technologies and a technology to technology fusion platform for smart 5G connected devices.

In-Building Coverage

In-Building

ntenna

Ultra Wide Band (617-960 / 1710-2690 / 3500 / 5800MHz) Perfectly Camouflaged Antenna (Complaint Free) Cost Reduction – 2 in 1 Concept (Antenna + Information Sign)

Indoor Cell coverage solution for coverage optimization. For general service operator testing and building cell coverage. Meets indoor requirements, which vary greatly because not all environment are similar.

5G Infrastructure

Ultra Wideband Antennas for in-building solutions. High-Gain antenna technologies.

5G Network

Our patented design. Gain+ delivers a higher gain and wider beam steering range vs. conventional antennas.

In-Building Coverage

Our patented design. Gain+ delivers a higher gain and wider beam steering range vs. conventional antennas.

Ultra compact Multi-Gang cable series that can carry a signal with low loss and near-zero EMI.

We make your RF the BEST Business

5G Wireless Device

TLIA® solution Various IT applications and a large market potential. Smart TV

60GHz Wireless Connector. High Speed (6.25Gbps), Low Power-Consumption (mW level), and Short Range (5-20mm). High Gain + Gain-Flatness + Improved Isolation via Miniaturized Form Factor

5G Laptop

Ultra compact Multi-Gang cable series that can carry a signal with low loss and near-zero EMI.

60GHz Wireless Connector. High Speed (6.25Gbps), Low Power-Consumption (mW level), and Short Range (5-20mm). High Gain + Gain-Flatness + Improved Isolation via Miniaturized Form Factor

5G Smartphone

Flex-S® (multi-line cable) and TLIA® (Transmission Line Integrated Antenna) are made of low-loss materials and designed with patent-protected technologies. They are vital components in mmWave devices. FLEX-S® and TLIA® bring low-loss and high quality performance.

Superior Price and Performance compared to Third Party Products.

Semiconductor

SENSORVIEW's proprietary solution. Made possibly by innovation and patent ownership.

06

SENSORVIEW

SENSORVIEW's miniature multiband antenna solution. Optimized for 5G AUT in test & measurement.

- Minimizes chamber size

- Low Insertion Loss

Bending

- Low VSWR

- Decreases expenditure
- Maximizes test performance

- Phase Stability vs. Bending

Phase-Matched adapter that meet MIL STD 348. Manufactured in a wide range within / between series. Matched adapter have the same nominal connector mating reference plane to reference plane length.

SENSORVIEW connectors are designed and manufactured to guarantee optimize end product performance/ We provide optimal transition for a low return loss. We can tailor connectors for specific equipment and

Semiconductor **Test Equipment**

applications.

Test & Measurement

Compact OTA Testing Size Reduction SENSORVIEW's Proprietary Antenna

SENSORVIEW's high-quality, highperformance coaxial cable assembly. Low Insertion Loss

- Phase Stability vs. Temperature - Insertion Loss Stability vs. Bending
- Phase Stability vs. Bending - Low VSWR

Phase-Matched Adaptors that meet MIL STD 348. Manufactured in a wide range within / between series. Matched adaptors have the same nominal connector mating reference plane to reference plane length.

mmWave OTA Solutions

Low-loss phase-matched Microwave Cable

band antenna solution. Optimized for 5G AUT in test & measurement. - Minimizes chamber size

- Decreases expenditure
- Maximizes test performance

SENSORVIEW's high-quality, highperformance coaxial cable assembly.

- Low Insertion Loss
- Phase Stability vs. Temperature
- Insertion Loss Stability vs. Bending - Phase Stability vs. Bending
- Low VSWR

Phase-Matched Adaptors that meet MIL STD 348.

Manufactured in a wide range within / between series.

Matched adaptors have the same nominal connector mating reference plane to reference plane length.

SENSORVIEW

Missiles / Aircraft

Our unique braiding technology, "Zenild[®]" provides superior shielding effectiveness VS copper wire and offers significant weight savings. Silver Plated Fiber delivers over 60% weight savings VS copper wire at equal volumes.

Bendable* Microwave Cable Wireless Connector. Minimum Bend Radius 1.5mm - DC to 67GHz - Low-loss, EMI shielding - MIL-STD compliant - Outer Diameter 2mm

AESA Radar

High Efficiency, Masssive Antenna Arrays. Active Array Synthesis

Aerospace & Defense

EMI-Shielding Solution

Military Aircraft,

and AESA Radars

Phase-Matched Adaptors that meet MIL STD 348. Manufactured in a wide range within / between series. Matched adaptors have the same nominal connector mating reference plane to reference plane length.

SENSORVIEW connectors are designed and manufactured to guarantee optimize end product performance / We provide optimal transition for a low return loss. We can tailor connectors for specific equipment and applications.

Autonomous Vehicles

mmWave Array Antenna Our unique braiding technology, "Zenild[®]" provides superior shielding effectiveness VS copper wire and offers significant weight savings. Silver Plated Fiber Weights over 60% savings VS copper wire at equal volume Excellent.

Our patented antenna design, "Gain+" performs higher gain and wider beam steering range compare with the conventional antennas.

08

Connected Car

5G-Based Connected Car Light- Weight, EMI- Shielded

You<mark>r truste</mark>d partner for **5G** and **BEYOND-5G**

_____ Wsensorview

Microwave Cable & Connector 💓

07. FlexStable®

Low Loss Microwave Cable Excellent Flexibility Phase & Amplitude Stability

02. Flex Armor ™

High Crush resistance Excellent Flexibility Phase & Ampilitude Stability

03. Zenild ®

Ultra Light Weight Material & Cable High Screen Effectiveness

04. FlexiBe®

Minimum Bend Radius Cable Assembly (MBR 1.5mm)

05. Micro Coaxial Cable for W-Band 047 Type Flexible Cable (DC ~ 110GHz)

06. Gannector®

Magnetic Connector Solution Tool-Free & Quick Connector

07. End-Launch

Quick slide connector Bolt loss prevention

08. Connector & Adapter

Color Coded RF adapters Phase Match / Flange / Customized

FlexStable® Microwave Cable

SENSORVIEW FlexStable[®] microwave cable assembly series offer excellent performance providing various benefits to your specific needs.

Freq DC to 67GHz

Low-loss

VP (Velocity of propagation) 77 to 84%

Phase-Stable (vs. bending) Phase-Matching Under 1ps.

Cable Design & Core Material

SENSORVIEW

SENSORVIEW designs and produces the cable & connector solutions for microwave & milimeterwave systems by incorporating inhouse material technologies which guarantee excellent electrical performance versus flexure and temperature variation.

Aeroflon[®] Dielectric

For low loss and stable electrical performance

Sensorview has developed a new PTFE dielectric, named Aeroflon[®], demonstrating Dk (dielectric constant) about 1.6~1.7 and Df (loss tangent) about 0.0001@10GHz, which enables to achieve much lower loss in property of Microwave & mmWave coaxicial cable compared to general PFTE cable.

Sensorview's Aeroflon® has a smaller "Knee" in its CTE (Coefficient of Thermal Expansion) profile around room temperature and remains the same even when exposed to extreme temperature, therefore, it is excellent to apply in harsh environment.

PTFE Knee Graph

1.1

We make your RF the BEST Microwave Cable & Connector

Relative matching

Relative matching matches phase between two (which is one pair) or more cable assemblies which belongs to one another. Therefore, it is manufactured as sets with relative phase tolerance. Sensorview's default phase matching tolerance is $\pm 0.3^{\circ}$ /GHz. (e.g. an 18GHz cable can be phase matched to $\pm 5.4^{\circ}$)

Absolute matching

Absolute matching provides the matches in its assemblies to be at an absolute electrical length (Group delay). Any cable of a set can be replaced and manufactured in different location using any test equipment brand.

FlexStable® Microwave Cable

SENSORVIEW FlexStable[®] microwave cable assembly series offer excellent performance providing various benefits to your specific needs.

WSUPER FLEXIBLE

DUT and condition

Tested cable : FlexStable(9A40), UltraRG(11U8G), Typical RG cable

SENSORVIEW

Test results

Test condition : 1meter, Weight 520gram, 25°C

More drooped the weights are, more flexible cable is. FlexStable shows the longest droop, which means it affects little force to connector and DUT, accordingly more stable and easy to use in a lab and bench, also convenient to install in a chamber.

PHASE STABILITY (VS. BENDING)

'Insertion loss' and 'phase change' are measured under a bended condition using a 'Minimum Bend Radius' mandrel.

We make your RF the BEST Microwave Cable & Connector

The Immortal Knight of The Cable World

DC ~ 8GHz Series

Spec.

コが対し

- Impedance (Nominal) : 50 ± 1 Ohm
- Velocity Propagation : 77% (Nominal)
- RF Leakage : -85dB
- Minimum Bend Radius [mm] : 25
- Phase Stability vs Flexture (Typical) : ${\sf Max.}~2^{\circ} @~8{\sf GHz}$
- Loss Stability vs Flexture (Typical) : ±0.05 dB

Туре	Figure	Product Part Name	Center Conductor	Overall Outer Diameter	Weight [g/m]	Temperature Range	Typical Insertion Loss [dB/m]	Average Power Rating [Watt] @ 25°∁ at Sea Level
			Туре	[mm]		[°C]	8GHz	8GHz
 Low Loss Super Flex Aramid Jacket 	C) 11A8G	Stranded	5.8 ± 0.1	53	-50 ~ 135	-1.07	223
 Low Loss Super Flex Resin Jacket 	C	1158G		5.2 ± 0.1	49.9			
Low LossFlexFEP Jacket	\mathcal{C}) 11F8G		4.9 ± 0.1	49.3	-50 ~ 125		190
Low LossSuper FlexPUR Jacket	\sim	11U8G		5.2 ± 0.1	53.3	-50 ~ 85		69
Low LossFlexAramid Jacket	P	11A8GD	g	5.8 ± 0.1	54			3
Low LossFlexPUR Jacket	C) 1158GD	Sol	5.2 ± 0.1	50.6	-50 ~ 135	-1.03	266

Available Connector : SMA(ST, RA), N(ST, RA)

SENSORVIEW

We make your RF the BEST Microwave Cable & Connector

DC ~ 18GHz Series

- Impedance (Nominal) : 50 ± 1 Ohm
- Velocity Propagation : 77% (Nominal, 13x26, 9S18G, 9F18GD) | 84% (Nominal, 23F18WD)
- RF Leakage : -100dB (13x26) | -85dB (9S18G, 9F18GD)
- Minimum Bend Radius [mm] : 30 (13x26) | 15 (9S18G) | 20 (9F18GD)
- Phase Stability vs Flexture (Typical) : Max. 10° @ 18GHz (13x26, 9S18GD, 23F18WD) | Max. 18° @ 18GHz (9F18GD)
- Loss Stability vs Flexture (Typical) : ±0.1 dB

Туре	Figure	Product Part Name	Center Conductor	Overall Outer Diameter	Weight [g/m]	Temperature Range	Typical Insertion Loss [dB/m]	Average Power Rating [Watt] @ 25°∁ at Sea Level
			Туре	[mm]	-0, -	[°C]	18GHz	18GHz
Low Loss	Contraction of the local division of the loc							
Super Flex	Anna and and			9.7 ± 0.3	192	-50 ~ 135		
Aramid Jacket	0	13R26						
Low Loss	Contraction of the local data	990						
Super Flex	And and and			6.7 ± 0.1	81			184
Aramid Jacket	V	13A26				-50 ~ 135	-1.23	
Low Loss			ded					
Super Flex		~	ran	6.2 ± 0.1	73			
FEP Jacket		13S26	St					
Low Loss		7						
Flex	1)		5.7 ± 0.1	56.2	-50 ~ 125		149
FEP Jacket		13F26						
Low Loss								
Super Flex	K	~		4.2 ± 0.1	34.4	-50 ~ 135	-1.75	130
Resin Jacket	9	9518G						
Low Loss								
Flex		Λ		3.8 [±] 0.1	33	-50 ~ 125	-1.72	155
■ FEP Jacket	6	9F18GD	olid					
Low Loss			S					
Flex				7.68 [±] 0.1	130	-50 ~ 135	-0.75	377
■ FEP Jacket		23F18WD						

 Available Connector : SMA(ST), N(ST), TNC(ST)

 SMA Male Straight
 SMA Female Straight
 SMA Male Short
 N Male Straight
 TNC Male Straight

 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Image: Small straight
 Ima

SENSORVIEW

Spec.

I))(K II

DC ~ 26.5GHz Series

Spec.

의 조민

- Impedance (Nominal) : 50 ± 1 Ohm
- Velocity Propagation : 77% (Nominal)
- RF Leakage : -100dB
- Minimum Bend Radius [mm] : 30
- Phase Stability vs Flexture (Typical) : Max. 10° @ 26.5GHz
- Loss Stability vs Flexture (Typical) : ±0.1 dB

Туре	Figure	Product	Center Conductor	Overall Outer Diameter	Weight	Temperature Range	Typical Insertion Loss [dB/m]	Average Power Rating [Watt] @ 25°∁ at Sea Level
		Fait Name	Туре	[mm]	LE/111	[°C]	26.5GHz	26.5GHz
 Low Loss Super Flex Aramid Jacket 	$\left\{ \begin{array}{c} \\ \end{array} \right\}$	13R26		9.7 ± 0.3	192			
 Low Loss Super Flex Aramid Jacket 	P	13A26	Stranded	6.7 ± 0.1	81	-50 ~ 135		155
 Low Loss Super Flex Resin Jacket 		13526		6.2 ± 0.1	73			
Low LossFlexFEP Jacket	C) 13F26		5.7 ± 0.1	56.2	-50 ~ 125		149
Low LossSuper FlexArmor Jacket	0	13R26D		9.7 ± 0.3	193		-1.55	
 Low Loss Super Flex Armor Jacket 	6	13A26D	lid	6.7 ± 0.1	82	-50 ~ 135		183
 Low Loss Super Flex Resin Jacket 	\sim	13S26D	Soli	6.2 ± 0.1	74			
Low LossFlexFEP Jacket	C) 13F26D		5.7 ± 0.1	57.2	-50 ~ 125		151

SENSORVIEW

SENSORVIEW

We make your RF the BEST Microwave Cable & Connector

DC ~ 33GHz Series

- Impedance (Nominal) : 50 ± 1 Ohm
- Velocity Propagation : 77% (Nominal)
- RF Leakage : -100dB
- Minimum Bend Radius [mm] : 25
- Phase Stability vs Flexture (Typical) : Max. 10° @ 33GHz
- Loss Stability vs Flexture (Typical) : ±0.1 dB

Туре	Figure	Product Part Name	Center Conductor	Overall Outer Diameter	Weight	Temperature Range	Typical Insertion Loss [dB/m]	Average Power Rating [Watt] @ 25°∁ at Sea Level
			Туре	[mm]	-6/	[°C]	33GHz	33GHz
Low Loss	Contraction of the local division of the loc	900						
Super Flex	Constant of			9.7 ± 0.3	172			
Armor Jacket	8	11R33						
Low Loss			ed					
Super Flex	Cummenter		and	5.7 ± 0.1	59			121
Aramid Jacket	0	11A33	Str					
Low Loss	\bigcap							
Super Flex	N	ハ		5.3 ± 0.1	53			
Resin Jacket		11533						
Low Loss	and the second							
Super Flex	Cummum			9.7 ± 0.3	173	-40 ~ 125	-2.03	
Armor Jacket	1	11R33D						
Low Loss	Comment of the second second	1						
Super Flex	Commune - 10		olid	5.7 ± 0.1	59.2			143
Aramid Jacket	6	11A33D	S					
Low Loss	\bigcap	1						
Super Flex	K	ハ		5.3 ± 0.1	53.2			
Resin Jacket		11S33D						

Available Connector : HFSMA(ST)

HFSMA Male Straight	-			_	
	<u>N</u>	W.	W	W	
E A	SENSORVIEW	SENSORVIEW	SENSORVIEW	SENSORVIEW	
					18

SENSORVIEW

Spec.

則巡归

DC ~ 40GHz Series

Spec.

ీ

- Impedance (Nominal) : 50 ± 1 Ohm
- Velocity Propagation : 77% (Nominal)
- RF Leakage : -100dB
- Minimum Bend Radius [mm] : 25
- Phase Stability vs Flexture (Typical) : Max. 14° @ 40GHz
- Loss Stability vs Flexture (Typical) : ±0.1 dB

Туре	Figure	Product Part Name	Center Conductor	Overall Outer Diameter	Weight [g/m]	Temperature Range	Typical Insertion Loss [dB/m]	Average Power Rating [Watt] @ 25°∁ at Sea Level
			Туре	[mm]	-6/ -	[°C]	40GHz	40GHz
Low Loss	CONTRACTOR OF CONTRACTOR	AND						
Super Flex	K	1000 C		8.4 ± 0.3	183			
Armor Jacket	1	9R40						
Low Loss	- Distance in the same of the	And the second sec						
Super Flex	(man		Solid	5.4 ± 0.1	49	-40 ~ 125	-2.60	102
Aramid Jacket	6	9A40						
Low Loss	\frown							
Super Flex	6			5.0 ± 0.1	44			
Resin Jacket	6	9\$40						

Available Connector : 2.4mm, 2.92mm(ST, SH)

SENSORVIEW

We make your RF the BEST Microwave Cable & Connector

DC ~ 50GHz Series

- Impedance (Nominal) : 50 ±10hm
- Velocity Propagation : 77% (Nominal)
- RF Leakage : -100dB
- Minimum Bend Radius [mm] : 25
- Phase Stability vs Flexture (Typical) : Max. 15° @ 50GHz
- Loss Stability vs Flexture (Typical) : ±0.1 dB

Туре	Figure	Product Part Name	Center Conductor	Overall Outer Diameter	Weight	Temperature Range	Typical Insertion Loss [dB/m]	Average Power Rating [Watt] @ 25°∁ at Sea Level
		T di t Hame	Туре	[mm]	-6/113	[°C]	50GHz	50GHz
Low LossSuper Flex	-			8.4 ± 0.3	173			
Armor Jacket	6	7R50D	Solid			-40 ~ 125	-3.87	88
Low LossSuper Flex	C	7		4.5 ± 0.1	34			
Aramid Jacket	C.	7A50D						

Static Application

SENSORVIEW

Spec.

DC ~ 67GHz Series

Spec.

- Impedance (Nominal) : 50 ±1 Ohm
- Velocity Propagation : 77% (Nominal)
- **RF Leakage :** -100dB (5R67D, 5A67D)
- Minimum Bend Radius [mm] : 20 (5R67D, 5A67D)
- Phase Stability vs Flexture (Typical) : Max. 19° @ 67GHz (5A67D) | Max. 14° @ 67GHz (5R67D)
- Loss Stability vs Flexture (Typical) : ±0.1 dB

Туре	Figure	Product Part Name	Center Conductor	Overall Outer Diameter	Weight	Temperature Range	Typical Insertion Loss [dB/m]	Average Power Rating [Watt] @ 25°∁ at Sea Level
			Туре	[mm]	-8, -	[°C]	67GHz	67GHz
 Low Loss Super Flex Armor Jacket 		5R67D		6.6 ± 0.3	63			
 Low Loss Super Flex Aramid Jacket 	P	5A67D	Solia	3.6 ± 0.1	25	-40 ~ 85	-0.32	64

Zenic Ultra light weight solution

zenild®

Our unique braiding technology, "Zenild[®]" provides superior shielding effectiveness VS copper wire and offers significant weight savings. Silver Plated Fiber delivers over 60% weight savings VS copper wire at equal volumes.

Zenild[®] vs Silver Plated Copper

- RF Leakage SPC Zenild 70
75
80
85
90
95
100
105
110

We make your RF the BEST Microwave Cable & Connector

FlexiBe[®]

- Impedance (Nominal) : 50 ±10hm
- Velocity Propagation : 70% (Nominal)
- RF Leakage : -110dB
- Minimum Bend Radius [mm] : 1.5 (SFPS27D1) | 5.0 (SFPS24D1)
- Loss Stability vs Flexture (Typical) : 0.1 dB

DC ~ 67GHz

Figure	Product Part Name	Center Conductor	Overall Outer Diameter	Weight	Temperature Range	Typical Insertion Loss [dB/m]	Average Power Rating [Watt] @ 25°∁ at Sea Level
		Туре	[mm]	-6/ ***	[°C]	67GHz	67GHz
	FlexiBe 67	Solid	2 ± 0.1	12.6	-40 ~ 125	-11	27

Spec.

Spec.

DC ~ 50GHz

Figure	Product Part Name	Center Conductor	Overall Outer Diameter	Weight	Temperature Range	Typical Insertion Loss [dB/m]	Average Power Rating [Watt] @ 25°∁ at Sea Level
		Туре	[mm]	-6/ -	[°C]	50GHz	50GHz
No. 1	FlexiBe 50	Solid	2.5 ± 0.1	19.4	-40 ~ 125	-6.7	52

		Available Co	nnector : 1.85mn	n, 2.92mm, SMA	
2.92mm Male Short	1.85mm Male Short	2.92mm Male Short	SMA Male Short		_
	-	An	No.	SENSORVIEW	
					24

SENSORVIEW

Micro Coaxial Cable for W-Band

Spec.

- Impedance : 50 ± 2 Ohm
- Velocity Propagation : 70% (Normal)
- **RF Leakage :** -70dB
- Minimum Bend Radius [mm]: 4.5
- Loss Stability vs Flexture (Typical) : 0.1 dB

DC ~ 110GHz

Magnetic Connect Solution

Gannecter

Easy! Fast!

Push-on type

Excellent electric performance independent of screw torgue Magnetic Connect and Disconnect.

BYE~ SMA!! Himector

When male and female components are united, the coupling nut will **automatically orient** them. When pressed so that **the black band is no longer visible,** it will produce a **"click" sound.**

If you separate the components while turning them 90 degrees, they will seamlessly separate.

Hybrid Connector - Gannector®

- Dual Contact / Radial Contact / **Magnetic Contact**
- Tool-less (No torque wrench required)
- Frequency Range (up to 20GHz)
- Quick-Lock

Screw type

GANNECTOR

DC ~ 18GHz SMA to Gannector Adapters

Product Part Name (Description)	Drawing [mm]	Specification	Spec. QR Code
Gannector(m) to SMA(f) M2P92MST-SMAF-001	24.35	 VSWR: 1.35 Max Impedance: 50 ohm Insertion loss: - 0.03dB x √F Mating cycle: 350 times 	
Gannector(f) to SMA(m) M2P92FST-SMAM-001	21.35	 VSWR:1.35 Max Impedance:50 ohm Insertion loss: - 0.03dB x √F Mating cycle:350 times 	
Gannector(f) to SMA(m) M2P92FPM-SMAM-001		 VSWR:1.35 Max Impedance:50 ohm Insertion loss: - 0.03dB x √F Mating cycle:350 times 	
Gannector(f) to SMA(f) M2P92F4H-SMAF-001	25.90	 VSWR: 1.35 Max Impedance: 50 ohm Insertion loss: - 0.04dB x √F Mating cycle: 350 times 	

GANNECTOR

DC ~ 18GHz N to Gannector Adapters

Product Part Name (Description)	Drawing [mm]	Specification	Spec. QR Code
Gannector(m) to N(f) M2P92MST-NF-001	33.75	 VSWR: 1.35 Max Impedance: 50 ohm Insertion loss: - 0.06dB x √F Mating cycle: 350 times 	
Gannector(f) to N(m) M2P92FST-NM-001	27.65	 VSWR: 1.35 Max Impedance: 50 ohm Insertion loss: - 0.06dB x √F Mating cycle: 350 times 	

DC ~ 18GHz Gannector (Panel Mount)

Product Part Name (Description)	Drawing [mm]	Specification	Spec. QR Code
Gannector(f) 2 Hole M2P92F2H-001	18.15 5.70 000 000 000 000 000 000 000 000 000	 VSWR: 1.25 Max Impedance: 50 ohm Insertion loss: - 0.03dB x √F Mating cycle: 350 times 	
Gannector(f) 4 Hole M2P92F4H-002		 VSWR : 1.25 Max Impedance : 50 ohm Insertion loss : - 0.03dB x √F Mating cycle : 350 times 	

Microwave Coaxial Connector & Adapter

SENSORVIEW coaxial connectors & adapters are designed and manufactured to guarantee optimized performance of the end products. We can provide the optimum transition for low return loss. Specially we can tailor connectors to specific equipment and application needs. 2.4(F) TO 292(F) 1.85(F) TO 1.85(F) PC ~ 40GHZ PC ~ 67GHZ 292(F) TO 292(F) PC ~ 40GHZ 2.4(F) TO 2.4(F) PC ~ 50GHZ UST CHOOSE BUCOLOR"

Connector EM Design

Proprietary EM Design and Precision Assembly Technology for DC-67GHz

ADAPTER

DC ~ 67GHz - 1.85mm(V) In-Series

Product Part Name (Description)	Drawing [mm]	Specification	Spec. QR Code
1.85mm(m) to 1.85mm(m) IP85MST-IP85M-001		 VSWR: 1.25 Max Impedance: 50 ohm Insertion loss: - 0.05dB x √F Mating cycle: 500 times 	
1.85mm(m) to 1.85mm(f) IP85MST-IP85F-00I		 VSWR: 1.25 Max Impedance: 50 ohm Insertion loss: - 0.05dB x √F Mating cycle: 500 times 	
1.85mm(f) to 1.85mm(f) IP85FST-IP85F-001		 VSWR: 1.25 Max Impedance: 50 ohm Insertion loss: - 0.05dB x √F Mating cycle: 500 times 	
1.85mm(f) to 1.85mm(f) IP85F4H-IP85F-00I		 VSWR : 1.30 Max Impedance : 50 ohm Insertion loss : - 0.05dB x √F Mating cycle : 500 times 	

We make your RF the BEST Microwave Cable & Connector

ADAPTER

DC ~ 50GHz - 2.4mm In-Series

Product Part Name (Description)	Drawing [mm]	Specification	Spec. QR Code
2.4mm(m) to 2.4mm(m) 2P4MST-2P4M-001		 VSWR: 1.25 Max Impedance: 50 ohm Insertion loss: - 0.04dB x √F Mating cycle: 500 times 	
2.4mm(m) to 2.4mm(f) 2P4MST-2P4F-001		 VSWR: 1.25 Max Impedance: 50 ohm Insertion loss: - 0.04dB x √F Mating cycle: 500 times 	
2.4mm(f) to 2.4mm(f) 2P4FST-2P4F-001		 VSWR: 1.25 Max Impedance: 50 ohm Insertion loss: - 0.04dB x √F Mating cycle: 500 times 	
2.4mm(f) to 2.4mm(f) 2P4F4H-2P4F-001		 VSWR: 1.25 Max Impedance: 50 ohm Insertion loss: - 0.04dB x √F Mating cycle: 500 times 	

ADAPTER

DC ~ 40GHz - 2.4mm to 2.92mm Between-Series

Product Part Name (Description)	Drawing [mm]	Specification	Spec. QR Code
2.4mm(m) to 2.92mm(m) 2P4MST-2P92M-001		 VSWR: 1.15 Max Impedance: 50 ohm Insertion loss: - 0.03dB x √F Mating cycle: 500 times 	
2.4mm(m) to 2.92mm(f) 2P4MST-2P92F-001	19.45	 VSWR: 1.15 Max Impedance: 50 ohm Insertion loss: - 0.03dB x √F Mating cycle: 500 times 	
2.4mm(f) to 2.92mm(m) 2P4FST-2P92M-001		 VSWR: 1.15 Max Impedance: 50 ohm Insertion loss: - 0.03dB x √F Mating cycle: 500 times 	
2.4mm(f) to 2.92mm(f) 2P4FST-2P92F-001	20.40	 VSWR : 1.15 Max Impedance : 50 ohm Insertion loss : - 0.03dB x √F Mating cycle : 500 times 	

We make your RF the BEST Microwave Cable & Connector

ADAPTER

DC ~ 40GHz - 2.92mm(K) In-Series

Product Part Name (Description)	Drawing [mm]	Specification	Spec. QR Code
2.92mm(m) to 2.92mm(m) 2P92MST-2P92M-001		 VSWR: 1.15 Max Impedance: 50 ohm Insertion loss: - 0.03dB x √F Mating cycle: 500 times 	
2.92mm(m) to 2.92mm(f) 2P92MST-2P92F-001		 VSWR: 1.15 Max Impedance: 50 ohm Insertion loss: - 0.03dB x √F Mating cycle: 500 times 	
2.92mm(f) to 2.92mm(f) 2P92FST-2P92F-001	19.30	 VSWR: 1.15 Max Impedance: 50 ohm Insertion loss: - 0.03dB x √F Mating cycle: 500 times 	
2.92mm(f) to 2.92mm(f) 2P92F4H-2P92F-004	19.30	 VSWR: 1.15 Max Impedance: 50 ohm Insertion loss: - 0.03dB x √F Mating cycle: 500 times 	
2.92mm(f) to 2.92mm(f) 2P92FBH-2P92F-005	22.20	 VSWR: 1.15 Max Impedance: 50 ohm Insertion loss: - 0.04dB x √F Mating cycle: 500 times 	

ADAPTER

DC ~ 18 / 26.5GHz - 3.5mm / SMA In-Series

Product Part Name (Description)	Drawing [mm]	Specification	Spec. QR Code
3.5mm(f) to 3.5mm(f) 3P5FBH-3P5F-001		 Frequency : DC ~ 26.5Ghz VSWR : 1.15 Max Impedance : 50 ohm Insertion loss : - 0.04dB x √F Mating cycle : 500 times 	
SMA(m) to SMA(m) SMAMST-SMAM-001	21.40 Frequency : DC ~ 18Ghz VSWR : 1.15 Max Impedance : 50 ohm Insertion loss : - 0.03dB x √F Mating cycle : 500 times		
SMA(f) to SMA(f) SMAFST-SMAF-001	19.30	 Frequency : DC ~ 18Ghz VSWR : 1.15 Max Impedance : 50 ohm Insertion loss : - 0.03dB x √F Mating cycle : 500 times 	
SMA(f) to SMA(f) SMAF4H-SMAF-001	35.00	 Frequency : DC ~ 18Ghz VSWR : 1.25 Max Impedance : 50 ohm Insertion loss : - 0.05dB x √F Mating cycle : 500 times 	
SMA(f) to SMA(f) SMAFBH-SMAF-002	22.20	 Frequency : DC ~ 26.5Ghz VSWR : 1.20 Max Impedance : 50 ohm Insertion loss : - 0.04dB x √F Mating cycle : 500 times 	

We make your RF the BEST Microwave Cable & Connector

ADAPTER

DC ~ 18GHz - SMA to N type Between-Series

Product Part Name (Description)	art Name Drawing [mm] Specification		Spec. QR Code	
SMA(m) to N(f) SMAM4H-NF-001	31.80	31.80 Frequency : DC ~ 18Ghz • VSWR : 1.20 Max		
		• Impedance: 50 ohm		
		• Insertion loss : - 0.06dB x \sqrt{F}	首調線	
		• Mating cycle : 500 times		
SMA(f) to N(f) SMAF4H-NF-001	40.00	Frequency : DC ~ 18GhzVSWR : 1.30 Max		
		• Impedance : 50 ohm		
		• Insertion loss : - 0.06dB x √F	首親機	
		• Mating cycle : 500 times		

DC ~ 18GHz - N type

In-Series

Product Part Name (Description)	Drawing [mm]	Specification	Spec. QR Code
N(f) to N(f) NF4H-NF-001	38.00	 Frequency : DC ~ 18Chz VSWR : 1.20 Max Impedance : 50 ohm Insertion loss : - 0.06dB x √F Mating cycle : 500 times 	
N(f) to N(f) NFBH-NF-002	38.00	 Frequency : DC ~ 12.4Ghz VSWR : 1.20 Max Impedance : 50 ohm Insertion loss : - 0.06dB x √F Mating cycle : 500 times 	
N(f) to N(f) NFBH-NF-003	44.30	 Frequency : DC ~ 18Chz VSWR : 1.20 Max Impedance : 50 ohm Insertion loss : - 0.07dB x √F Mating cycle : 500 times 	

SENSORVIEW

MULTI/MICRO-COAXIAL Dual-ports RF Interconnector

5G Antenna module for Small cell & base station

What is 5G Antenna module?

Communication equipment (small-cell and baseband station) manufacturers have difficulties in designing mmWave antenna module yet. For this reason, **Qualcomm** provides mmWave antenna modules, not chipset only.

Where are Sensorview products?

MG210 is mounted on Qualcomm's mmWave Antenna module.

MG210 has low-loss, low EMI leakage traits with multi-gang micro interconnector. Coaxial lines are combined into a connector with 50 ohm matched thoroughly. Slide-mating interface secures anti-rotation and anti-vibration stability.

Main applications are CPE, Small cell, Laptop, IF signal transmission.

Features

Space Efficiency : Minimize footprint size by 2 ganged connector

Power Efficiency : Low loss coaxial cable (DK < 2.0)

Mechanically Stability : Strong resistance to X-Y-Z moving and vibration

Minimized Crosstalk : Each contact is electrically/mechanically separated

Minimized RF Interference : Full - enclosed mating by ground shell

MG210 Products

Receptacle : (P/N : MG210RE02)

Plug to plug cable assembly : (P/N : MGC102XX)

Plug to Female SMAs cable assembly : (P/N : TRA2PA5)

Plug to Male SMAs cable assembly : (P/N : TRA2PA6)

Tweezer for Mating and unmating a plug : (P/N : GJSZZA5)

We make your RF the BEST Micro-Coaxial Interconnector

MApplication -CPE / Hotspot Femtocell / (Customer Laptop Premises Small cell Equipment) 14 Plug cable assembly Receptacle [Receptacle] 3.70 24 5.90 A MGC10216 Mated into MG210RE02 Mating Direction PCB PCB Sliding Type PCB SV AWG32 Min. 7.4mm = 3.7mm X 2EA Min. 14.8mm = 3.7mm X 4EA = = 0.D 0.88mm [Plug Cable Assembly] Footprint(land pattern) area of multiple MG210 receptacles Charifantia MCOTO

specification		MGZTU	
Ports (RF Signal)		2ports (can assemble with 1 port connector)	
Frequency		DC to 10GHz (Can support up to 15GHz)	
Mating direction		Horizontal (Sliding)	
Size (X,Y)	{ PCB pad }	3.7 x 5.9mm	
Size (X,Y)	{ Top view }	3.7 x 5.9mm	
Size (Z)	{ Mate height }	2mm	
Cable	Diameter	0.88mm	
Insertion loss	(@10GHz/200mm)	-1.7dB	
VSWR	(DC to 10GHz)	Max 1.5	38
Crosstalk	(DC to 10GHz)	Typical < - 45dB	

SENSORVIEW

MULTI/MICRO-COAXIAL Dual-ports RF Interconnector MQ 5M

M.2 Card

What is 5G M.2 card?

Laptop, CPE manufacturers need easy 'plug and play' card to realized 5G mmWave. For this reason, OEM of **Global top fabless RF chip company** manufactures M.2 cards by **Global top fabless RF chip company's** reference design.

Where is Sensorview products?

MG215M is listed on recommended components in Global top fabless RF chip company reference design.

MG215M has low-loss, low EMI leakage, dual-ports micro coaxial RF interconnector. Two Coaxial lines are in a connector with 50 ohm matched thoroughly. Vertical-mating interface secures anti-rotation and anti-vibration stability.

Main applications are CPE, Laptop, M.2 Card RF or IF(Intermediate Frequency) transmission.

5G M.2 card for Laptop & CPE

Features

Footprint / Mating height : Minimize footprint and mating height with dual-ports

Power Efficiency : Low loss coaxial cable (DK < 2.0)

Minimized Crosstalk : Each contacts are electrically/mechanically separated

Minimized RF Interference : Enclosure is fully shielded by ground shell

MG215M Products

Receptacle : (P/N : MG215MRE02)

Plug to plug cable assembly : (P/N : MGC152XX)

Plug to Female SMAs cable assembly : (P/N : TRA2P01)

Plug to Male SMAs cable assembly : (P/N : TPA2PA3)

Tweezer for Mating and unmating a plug : (P/N : GJSZZA7)

We make your RF the BEST Micro-Coaxial Interconnector

SENSORVIEW

For Sub6 For mmWave

SENSORVIEW

SENSORVIE

SENSORVIEW

SMFinder® High-end mmWave Antenna

Stable & Accurate Measurement

SMFinder[®] type antennas promise stable & accurate measurement for relative DUT performance.

Application	Phase and Gain Adjustable	Light-Weight
Lab & Bench	High Reliable	24 to 48GHz /
Test	Performance	55 to 67 GHz

Products

Figure	Product Part Name	Frequency	Gain [dBi/dBic]	Polarization	Size [WxHxD]/[mm]	Connector Type
	0015-01	24.0-29.5	10	Vertical & Horizontal	30(@) X 45	2.92mm
	0015A	24.0-40.5	15	Vertical & Horizontal	35(@) X 80	2.4mm
SENSORVIEW	0015B (Type 1)	24.0-40.5	13	Vertical	17 X 17 X 25	2.92mm
SENSORVIEW	0015B (Type 2)	24.0-40.5	13	Vertical	17 X 18 X 33	2.92mm
2.4	0015C	24.0-48.5	15	Vertical & Horizontal	42 X 42 X 60	2.4mm
SENSORVIEW	0015D	24.0-48.5	15	Vertical	34 X 24 X 45	2.4mm
	0015E	24.0-40.5	15	Vertical & Horizontal	52(@) X 123	2.92mm

COMPACT OTA TESTING

SMFinder series are highly efficient antennas for compact OTA testing.

- Lower cost
- (antenna, chamber box, absorber)
- (antenna, chamber box)
- Lighter than horn antennas

Products

Figure	Product Part Name	Frequency	Gain [dBi/dBic]	Polarization	Size [WxHxD]/[mm]	Connector Type
	0016	24.2-43.5	13	Circular	18 X 15 X 24	WR 28
	0016A	24.4-43.5	13	Circular	21 X 18 X 35	2.4mm
	0016B	24.2-48.5	14	Circular	18 X 20 X 41	2.4mm
	0016C	24.2-48.5	10.3	Circular	11 X 14 X 24	2.4mm
	0017	57-67	15	Circular	15(@) X 21	WR 15
- Alter	0013A	24.2-29.5	10	Circular	27 X 27 X 14	2.92mm
	0050	26.5-29.5 / 37.5-40.5	11/12	Circular	42 X 42 X 22	2.92mm
55	0051	24-26.5 / 26.5-29.5 / 37.5-40.5	11/11/12	Circular	42 X 42 X 27	2.92mm
00	0052	24-26.5 / 26.5-29.5 / 37.5-40.5 / 40.5-43.5	9/9/9/9.5	Circular	42 X 42 X 11	2.4mm

Antennas for Sub-6GHz In-Building Solution

The Most Suitable Antenna Solution for In-Building Networks for the New Era

ES

INNOVATION AWARDS

2023 HONOREE

Plated layer

Insulating layer

95% Transparency 'ESG' Low Plastic Usage Secured Performance

ransparent ntenna

Description	Туре	Frequency [GHz]	Gain [dBi]	Availability
	SISO	0.824~0.96 / 1.71~2.17 / 2.3~2.69 / 3.4~3.7	2.0 / 3.0 / 3.0 / 3.0	Available now
	ΜΙΜΟ	0.698~0.96 / 1.71~2.17 / 2.3~2.69 / 3.4~3.7	2.0 / 3.0 / 3.0 / 3.0	Available now
Tropoporont	SISO	0.617~0.96 / 1.71~2.69 / 3.4~3.7 / 5.8	2.0 / 3.0 / 3.0 / 3.0	Available now
iransparent	МІМО	0.617~0.96 / 1.71~2.69 / 3.4~3.7 / 5.8	2.0 / 3.0 / 3.0 / 3.0	Available now
	SISO	1.71~2.69 / 3.4~3.7 / 5.8	3.0 / 3.0 / 3.0	Available now (for Window)
	ΜΙΜΟ	1.71~2.17 / 2.3~2.69 / 3.4~4.	3.0 / 3.0 / 3.0	Available now (for Window)

Broadband Performance for Various Service

Ultra-thin (only 7 mm thickness) antenna for indoor

Reliable antenna performance

Eco-friendly installation

SF141 type (pig tail) available N-type or 4.3-10 mini-DIN connector available

Description	Туре	Frequency [GHz]	Gain [dBi]	Availability	
	SISO	0.698~0.96 / 1.71~2.69 / 3.4~3.7 / 5.8	3.0 / 4.0 / 4.0 / 4.0	Available now (Ceiling type)	
	МІМО	0.698~0.96 / 1.71~2.69 / 3.4~3.7 / 5.8	3.0 / 4.0 / 4.0 / 4.0	Available now	
UFO	SISO	0.698~0.96 / 1.71~2.69 / 3.4~3.7 / 5.8	3.0 / 4.0 / 4.0 / 4.0	Available now (Wall type / Side pigtail)	
	SISO	0.698~0.96 / 1.35~2.69 / 3.3~4.0	2.5 / 4.0 / 5.0	Available now (Ceiling / Pigtail type)	
	MIMO	0.698~0.96 / 1.35~1.55 / 1.71~2.69 / 3.3~4.0	4.0 / 4.0 / 4.0 / 5.0	Available now (Ceiling / Pigtail type)	

SENSORVIEW

Pass the Baton without a Touch

5G Wireless Devices

Contactless Connectivity

Data transmission 6Gbps, Total jitter 0.375UI, 5~20mm

> High Speed (6.25Gbps)

Energy Efficiency (mW) short distance (5~20mm) 60GHz Wireless connector

High-Gain + Gain-Flatness + Improved-Isolation with Miniaturized Form Factor

Side to side

Face to face

Side to side (Multi-link)

	We make your RF the BEST 60GHz soldering Antenna
01.	Replace physical-contacting cable and connector Communicate in rotating 360degree
02.	Transmit / Receive 6.25Gbps without physical contact of connectors No wear-off conductor(or pin) of connector and cable
03.	Transmit / Receive data and power with combination of commercialized wireless-power-transfer device
04.	Provide ST60 antenna modules with interfaces of connector or SMT

Industry Best Power per Bit 6.6pj / bit for Tx & 4.1pj / bit for Rx

10mW

1W

10W

10mW

Application

Factory Automation (e.g. OTA Testing & Flashing)

No cables to plug / unplug for reliability and higher manufacturing productivity.

Industrial Equipment (e.g. Monitoring, Machine Vision)

Contactless, freedom of movement, physical and electrical isolation, form-factor, reliability.

Display (e.g. LED TV & Display Wall)

LED tiles without physical connectors for detachability, form-factor, reliability.

Personal Electronics (e.g. Smartphone, Wearable)

No connector wear & tear, water and dust proof, sleek design, foldable display.

Туре		Figure	Frequency [GHz]	Peak gain [dBi]	Substrate (FR4) (Layer/Thickness mm)
F2F	Туре 1		55 ~ 65	7.4	6L 1.2T
	Туре 2		55 ~ 65	7.5	6L 1.2T
	Dual		56 ~ 66	5.5	6L 1.2T
	Vertical horn		55 ~ 65	7.8	4L 1T
	Slant horn		55 ~ 65	7.5	4L 1T
	Multi-link		55 ~ 65	7.4	6L 1.2T
S2S	Multi-link		55 ~ 65	6.5	6L 1.2T
	Туре 1		55 ~ 65	4.1	6L 1.2T
	Туре 2		56 ~ 66	4.9	6L 1.2T

Туре		Frequency [GHz]	Peak gain [dBi]	Substrate (FR4) (Layer/Thickness mm)	Feature
F2F	SAM1	55 ~ 65	6dBi	6L 1.2T	Single No R/C No shield can
	SAM2	55 ~ 65	6dBi	6L 1.2T	Loopback + R/C
	SAM3	55 ~ 65	5dBi	6L 1.2T	SAM2 + R/C + Shield can
	SAM4	56 ~ 66	8dBi	4L 1.2T (v1) 6L 1.2T (v2)	Horn + R/C
	SAM5	56 ~ 66	8dBi	6L 1.2T	Horn + R/C + Shield can
S2S	SAM1	55 ~ 65	6dBi	6L 1.2T	Single + R/C
	SAM2	55 ~ 65	6dBi	6L 1.2T	Single + R/C + Shield can

We make your RF the BEST 60GHz soldering Antenna

M

Feature	Module	Product	Max data	Max. Distance (mm)	
reature	Size (mm)	Part Name	rate (Gbps)	Half duplex	Full duplex
Coaxial feed	16 x 17.5 x 1.2	S60PVS1A	5	25mm	Х
Aperture coupling	16 x 17.5 x 1.2	S60PVS2A	5	25mm	Х
Dual feeding patch	18.5 x 14 x 1.2	S60PVD1A	6.25	8mm	Not support
Horn	17 x 18.5 x 1	S60HVD1A	6.25	20mm	Not support
Horn	19 x 18.5 x 1.2	S60HVD2A	6.25	20mm	9mm
Coaxial feed	60.5 x 60.5 x 1.2	S60PVM1C	3	35mm	15mm
Dipole w / dielectric guide	53 x 50 x 1.2	S60PHM1A	2.83	32mm	On-going
Vivaldi	16 x 22 x 1.2	S60PHS1A	5	12mm	Х
Quasi yagi	16 x 20 x 1.2	S60PHS2A	5	10mm	Х

Module Size (mm)	Product Part Name	Max data rate (Gbps)	Max. Distance (mm)	
6.4 x 7.4	S60PVS3A	2.83 ~ 5.66	20 ~ 12	Verified
6.4 x 10	S60PVS4A	2.83 ~ 5.66	20 ~ 12	On-going
8 x 14	S60PVS4B	2.83 ~ 5.66	16 ~ 8	On-going
8 x 14	S60HVS1A	2.83 ~ 5.66	22 ~ 14	to be update
8 x 14	S60HVS1B	2.83 ~ 5.66	22 ~ 14	to be update
8 x 12	S60PHS3A	2.83 ~ 5.66	20 ~ 12	On-going
8 x 12	S60PHS3B	2.83 ~ 5.66	20 ~ 12	On-going

Representative

#705, Samwhan Hipex A, 240, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13493, Korea

sales@sensor-view.com T+82 2 2038 7765 / F+82 2 2038 7764

WWW.SENSOR-VIEW.COM

File Rev. 2023.09.01